Warning: Missing argument 3 for write(), called in /www/wwwroot/biwei1.cn/incs/robot.php on line 68 and defined in /www/wwwroot/biwei1.cn/incs/data.php on line 487 推荐阅读:《技术领导者需要知道的 5 个关于生成式 AI 的残酷真相 》很多企业为了接入生成式 AI 而接入 AI,但用户并不买单,使用率很低,无法盈利,他们没有意识到如何利用为生成式 AI 帮助用户解决问题,也没有为 AI 准备好高质量的数据,没有建立可靠的数据管道……文章总结了 5 条有关生成式…
这里面有几个原因。首先,你们的 AI 项目并不是为了解决用户的具体问题而设计的。对于许多数据团队来说,这只不过是因为你们正处于激烈竞争中,希望在初期探索阶段收集些数据和积累一些经验。但不久的将来,当你的产品能用生成式 AI 来去帮助用户解决真实的问题时 —— 相比于你们的专案小组(tiger team)头脑风暴如何将生成式 AI 应用到具体场景,你们会获得更高的用户接受度。
由于还在初期阶段,目前接入的生成式 AI 功能就像是“ChatGPT 的另一个版本”。
以一个例子来说明。想象一下你可能每天都在用的一个提高工作效率的应用,它用来分享组织知识。这样的应用可能会提供一些功能,比如执行“总结这部分内容”,“扩写这些内容”或“改变写作风格”等命令来处理非结构化的文本。每个命令就消耗一个 AI 积分。
没错,这些功能确实有用,但并不具备特色。
团队可能会决定购买一些 AI 使用机会,或者他们可能会简单地切换到另一个标签使用 ChatGPT。我不想完全忽略不使用 ChatGPT 从而避免泄露专有数据的好处,但这种做法在愿景和解决方案的规模上,与全国各地的财报电话会议上所描述的相比,显得较为有限。
所以,你需要考虑的是:你的生成式 AI 有哪些独特之处和附加价值?我来给你一点提示:高质量的专有数据。
这就是 RAG 模型(或有时是微调模型)对于生成式 AI 计划至关重要的原因。它让大语言模型(LLM)能够接触到企业的专有数据。(我将在后面解释这个原因。)
残酷真相 #2:你对深入使用生成式 AI 感到畏惧。
确实,生成式 AI(Generative AI)的潜力和复杂性让人望而却步。
你当然可以将 AI 模型更加深入地融入到组织的运作中,但这样做似乎充满了风险。让我们坦白说,ChatGPT 有时会给出不切实际的回答,其结果很难预料。它存在一个知识更新的限制,可能导致用户接收到过时的信息。更不用说,在处理数据上的失误和无意中向消费者提供错误信息可能带来的法律问题了。
你的数据处理失误可能会带来严重后果。因此,了解你提供给生成式 AI 的数据,并确保这些数据的准确性是至关重要的。
在我们向数据领导者发出的一项匿名调查中,询问他们离实现生成式 AI 应用还有多远时,有人回答说:“我认为并非我们的基础设施在阻碍我们。我们在这方面非常小心——随着技术快速变化和一个失误可能造成的巨大声誉损害,我们正在观望,等待这波热潮稍微退去。”