Warning: Missing argument 3 for write(), called in /www/wwwroot/biwei1.cn/incs/robot.php on line 68 and defined in /www/wwwroot/biwei1.cn/incs/data.php on line 487 最近,AI 圈子里有两个事值得关注:一个是 GPT-4o 推出了新的画图模型,另一个是豆包升级了“边搜边想”功能。这两个例子都指向了一个正在越来越被人接受和认同的 AI 新范式——“模型即产品”。它听起来有点抽象,但其实可能会影响未来 AI
最近,AI 圈子里有两个事值得关注:一个是 GPT-4o 推出了新的画图模型,另一个是豆包升级了“边搜边想”功能。这两个例子都指向了一个正在越来越被人接受和认同的 AI 新范式——“模型即产品”。它听起来有点抽象,但其实可能会影响未来 AI 产品的发展形态。那么“模型即产品”到底是什么意思,它跟传统的AI方式有什么不同,为什么它这么厉害但为什么又不够普及?
传统的AI应用大多是“工作流智能体”模式。啥意思呢?就是通过预先设计好固定的流程,把AI模型和其他工具串起来,按部就班地完成任务。比如前一段时间很火的 Manus,如果你让它“帮我规划一下北京到山西自驾游的详细行程”,那么它会设计一个类似于 TODO List 的工作流:
- 搜索北京到山西之间的景点信息
- 搜索北京到山西自驾游的攻略
- 生成详细行程
这样的工作流优点就是容易执行,按部就班就能出来结果,缺点就是不够灵活,因为 TODO List / 工作流一旦定了,就不好根据返回的结果做调整。如果搜索结果中出现了最近北京到山西之间某一段高速施工的新闻资讯,或者未来会出现极端天气的新闻资讯,那么就需要增加对绕开高速路段的搜索和天气预报的搜索,最终综合调整行程。